## In a nutshell: The bisection method

Given a continuous real-valued function $f$ of a real variable defined on the interval $\left[a_{0}, b_{0}\right]$ where $f\left(a_{0}\right)$ and $f\left(b_{0}\right)$ have opposite signs and neither is zero, the intermediate-value theorem guarantees that there is a root on that interval. This algorithm uses iteration, bracketing and averaging to approximate the root. The intermediate-value theorem is used to guarantee the existence of the root.

Parameters:
$\varepsilon_{\text {step }} \quad$ The maximum error in the value of the root cannot exceed this value.
$\varepsilon_{\text {abs }} \quad$ The value of the function at the approximation of the root cannot exceed this value.
$N \quad$ The maximum number of iterations.

1. Let $k \leftarrow 0$.
2. Given that we have constrained the root to $\left[a_{k}, b_{k}\right]$, if $b_{k}-a_{k}<\varepsilon_{\text {step }}$ and $\min \left\{\left|f\left(a_{k}\right)\right|,\left|f\left(b_{k}\right)\right|\right\}<\varepsilon_{\mathrm{abs}}$, we are done, and return whichever end-point has the smallest absolute value, returning either in the very unlikely case that $\left|f\left(a_{k}\right)\right|=\left|f\left(b_{k}\right)\right|$.
3. If $k>N$, we have iterated $N$ times, so stop and return signalling a failure to converge.
4. Let $m_{k} \leftarrow \frac{a_{k}+b_{k}}{2}$.
a. If $f\left(m_{k}\right)=0$, we are done, and return $m_{k}$.
b. If $f\left(m_{k}\right)$ and $f\left(a_{k}\right)$ have the same sign, let $a_{k+1} \leftarrow m_{k}$ and $b_{k+1} \leftarrow b_{k}$;
c. otherwise, $f\left(m_{k}\right)$ and $f\left(b_{k}\right)$ must have the same sign, so let $a_{k+1} \leftarrow a_{k}$ and $b_{k+1} \leftarrow m_{k}$.
5. Increment $k$ and return to Step 2.

## Convergence

The maximum error at any step is $b_{k}-a_{k}$, so with each step, the maximum error is halved. Thus, if $h$ is the error, the error decreases according to $\mathrm{O}(h)$.

